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ABSTRACT: The rise in atmospheric temperature over time is significantly affected by global warming. Many 
studies have been done on climate change. Analysis of meteorological phenomenon is a bit complex, so, 
this research paper is an attempt to model daily low temperature data with a Markov chain approach using 
generalized exponential model. We have used the data of daily low temperature of Ahmedabad, India, from 
1st January 2001 to 31st December 2011. The analysis is carried out based on seasonal (winter, summer, and 
monsoon) and yearly data. The data is divided into 11 states for winter, summer, and yearly data and 6 states 
for monsoon with a smaller length of interval of each state. The transition probability matrices (TPMs) are 
prepared to transit among states. Generalized exponential model is also used to predict temperature for the 
next day. It is a bit challenging task to utilize statistical distribution and Markov chain model simultaneously 
to analyze daily temperature data. To verify our model, we have simulated the temperature for the same 
period as in the data and the results are compared. A simulation study is also carried out to generate 
temperature for future 5000 and 10,000 days and the results are shown. The simulated results are highly 
matched with the original data. 

Keywords: Daily temperature, generalized exponential distribution, Indian season wise temperature, simulation, 
stochastic model, transition probability matrix. 

I. INTRODUCTION 

A lot of work has been done on analysing the 
hydrological and meteorological data since decades. 
Many studies have been done specifically, regarding the 
prediction of rainfall, temperature, evaporation, and 
precipitation. In meteorological data analysis 
temperature isone of the valued factors. 
In this study we have considered Ahmedabad’s daily 
low temperature data (in Celsius (°C)) from 01-01-2001 
to 31-12-2011. Ahmedabad, the largest city in Gujarat 
state and lies at 23.03°N 72.58°E in western India at 53 
meters (174 ft) above sea level on the banks of the 
Sabarmati river, in north-central Gujarat. The overall 
data is classified into three groups indicating the three 
seasons as monsoon (June to September), summer 
(February to May) and winter (October to January). In 
Ahmedabad daily low temperature lies almost between 
5°C to 35°C. The historical data of 11 years, since 2001 
to 2011 was collected from the website – 
https://www.wunderground.com/history/daily/VAAH/date
/2001-1-1 [1]. 
The data consists 4007 observations and they are 
bifurcated into three seasons as 1353 observations for 
winter, 1312 observation for summer and 1342 
observations for monsoon season. 
The data set is used for statistical analysis. In literature 
various types of time series models like ARIMA and 
exponential smoothing are utilized for analysis of such 
data. 
We have considered the daily temperature as the 
stochastic random variable as time dependent event. 
We have estimated average low temperature and 
average minimum-maximum of daily low temperature for 

season wise as well as entire yearly. A prediction is 
being made for number of days and percentage for low 
temperatures, greater than 12, 14, 18, 20, 24 and 26 
degree Celsius as well as less than 9, 11, 15, 17, 25 
and 27 degree Celsius for winter, summer and yearly 
temperature. As there is some different temperature 
range in monsoon season, the number of days with low 
temperatures greater than 24 and 26 degree Celsius 
predicted. In a similar manner less than 25 and 27 
degree Celsius for monsoon season is also considered 
for prediction. 
In India, generally the trend of temperature had been 
analyzed using time series modelling [2]. The 
generalized exponential distribution is also used in 
design of rainfall estimation [3]. A specific stochastic 
model using three main variables as durations, 
magnitude and peak value have been developed for 
consecutive episodes of environmental observations [4]. 
The truncated exponential distribution has also been 
applied for the daily temperature data [5]. 

II. MATERIALS AND METHODS 

We have used the generalized exponential distribution 
as a model for temperature data. It is also known as 
exponentiated exponential distribution. Generalized 
exponential distribution can be used to analyze the 
lifetime data in place of two parameter gamma or two 
parameter Weibull distribution. 
Generalized exponential distribution was introduced 
around two decades ago. The three parameters 
generalized distribution fits well than the three 
parameter Weibull distribution or the three parameters 
gamma distribution [6]. Exponentiated exponential 
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distribution have somewhat similar properties to the 
properties of Weibull or a gamma distribution [7]. And 
further this distribution is expanded with six parameters 
generalized extended inverse Gaussian density function 
involving a confluent hypergeometric function of two 
variables [8]. A Bayesian model is also used for the 
prediction of the rainfall data [9]. Weibull-gamma 
composite is the bestfit model to describe the wind 
turbines actual power curvesat the highest power. 
Generalized exponential distribution has several 
properties similar to gamma distribution. The distribution 
is very similar to the Weibull distribution. Generalized 
exponential distribution reduces to exponential 
distribution when shape parameter is equal to 1. This 
distribution is right skewed unimodal distribution. The 
detail study regarding generalized exponential 
distribution and its properties are precisely explained 
[10]. The flood frequency of Polish rivers is also 
analyzed with generalized exponential distribution [11]. 
In health care industry diagnosis of any specific disease 
can also be predicted and compared with various data 
mining techniques like Bayesian network, decision tree 
and support vector machine [12]. 
The daily low temperature data is grouped into 11 states 
for winter, summer and the whole yearly data whereas 6 
states are prepared for monsoon season. The states are 
shown in Table 1. 
Let Yt (where t = 1, 2, ..., N) be the daily low 
temperature observation for the day t, and the states as 
B1, B2, B3 ... B11. 
 
 

 

Table 1: States for low temperature. 

States 
Temperature (°C) for 
winter, summer and 

entire year 

Temperature (°C) for 
monsoon 

1 5-8 21-22 

2 9-10 23-24 

3 11-12 25-26 

4 13-14 27-28 

5 15-16 29-30 

6 17-18 31-33 

7 19-20 - 

8 21-22 - 

9 23-24 - 

10 25-26 - 

11 27-35 - 

We have measured the transition of the daily 
temperature from one state to another state. For 
example, on the date of 28

th
 November 2003 the daily 

low temperature is 5°C so, it belongs to state 1, and the 
next day 29

th
 November 2003 the temperature captured 

is 17°C which belongs to state 6. Hence, we say that 
there is a transition from state 1 to state 6. The 
transition probability for transition from state i to state j is 
denoted as pij, i,j = 1, 2, ... ,11. 
We have developed the transition probability matrix 
P=[pij]11 x 11 for winter, summer and yearly data and 
P=[pij]6 x 6 for monsoon data. 
The transitional probability pij is calculated using the 
frequency of each state and frequency fij, which denotes 
the number of days transits from the state Bi (Current 
day) to state Bj (Next day). The transitional probability 
matrix (TPM) for the three seasons and yearly basis are 
given displayed in Table 2- 5 (where TD = Today and 
TM = Tomorrow). 

 

Table 2: TPM for winter season. 

TD 
TM Transition probability matrix for winter season 

1 2 3 4 5 6 7 8 9 10 11 

1 0.1429 0.4286 0.1429 0.0000 0.1429 0.1429 0.0000 0.0000 0.0000 0.0000 0.0000 

2 0.0000 0.3889 0.4444 0.1111 0.0000 0.0185 0.0185 0.0000 0.0000 0.0185 0.0000 

3 0.0224 0.1418 0.3955 0.3433 0.0746 0.0149 0.0000 0.0000 0.0000 0.0075 0.0000 

4 0.0046 0.0320 0.2055 0.4384 0.2603 0.0365 0.0091 0.0046 0.0000 0.0046 0.0046 

5 0.0045 0.0090 0.0362 0.2489 0.4389 0.1855 0.0452 0.0090 0.0136 0.0090 0.0000 

6 0.0000 0.0000 0.0142 0.0664 0.2417 0.4550 0.1943 0.0095 0.0142 0.0000 0.0047 

7 0.0050 0.0100 0.0000 0.0100 0.0300 0.2650 0.5200 0.1450 0.0100 0.0000 0.0050 

8 0.0000 0.0000 0.0000 0.0000 0.0088 0.0354 0.3097 0.4867 0.1062 0.0354 0.0177 

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0471 0.0588 0.2353 0.4824 0.1647 0.0118 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0357 0.2738 0.5595 0.1310 

11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0417 0.0417 0.0417 0.0417 0.5417 0.2917 

Table 3: TPM for summer season. 

TD 
TM Transition probability matrix for summer season 

1 2 3 4 5 6 7 8 9 10 11 

1 0.5714 0.4286 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

2 0.1176 0.3529 0.2353 0.1765 0.0588 0.0588 0.0000 0.0000 0.0000 0.0000 0.0000 

3 0.0000 0.1739 0.3478 0.3478 0.0435 0.0870 0.0000 0.0000 0.0000 0.0000 0.0000 

4 0.0000 0.0385 0.0962 0.3654 0.3269 0.1154 0.0577 0.0000 0.0000 0.0000 0.0000 

5 0.0000 0.0119 0.0238 0.1667 0.3452 0.2976 0.1190 0.0238 0.0000 0.0119 0.0000 

6 0.0000 0.0000 0.0159 0.0397 0.1667 0.4286 0.2460 0.1032 0.0000 0.0000 0.0000 

7 0.0000 0.0000 0.0000 0.0000 0.0827 0.1729 0.3534 0.2556 0.1053 0.0150 0.0150 

8 0.0000 0.0000 0.0000 0.0075 0.0150 0.0602 0.1729 0.3759 0.2932 0.0451 0.0301 

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0181 0.0904 0.1506 0.4277 0.2651 0.0482 

10 0.0000 0.0000 0.0051 0.0000 0.0000 0.0101 0.0101 0.0354 0.1515 0.4848 0.3030 

11 0.0027 0.0027 0.0027 0.0054 0.0054 0.0027 0.0054 0.0054 0.0323 0.1317 0.8038 
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Table 4: TPM for monsoon season. 

TD 
TM Transition probability matrix for monsoon season 

1 2 3 4 5 6 

1 0.0000 0.5000 0.2500 0.2500 0.0000 0.0000 

2 0.0098 0.3431 0.5294 0.1078 0.0098 0.0000 

3 0.0033 0.0879 0.7065 0.1874 0.0116 0.0033 

4 0.0020 0.0225 0.2331 0.6708 0.0695 0.0020 

5 0.0000 0.0085 0.0598 0.2821 0.5556 0.0940 

6 0.0000 0.0000 0.0385 0.1154 0.3846 0.4615 

Table 5: TPM for yearly data. 

TD 
TM Transition probability matrix for yearly season 

1 2 3 4 5 6 7 8 9 10 11 

1 0.3571 0.4286 0.0714 0.0000 0.0714 0.0714 0.0000 0.0000 0.0000 0.0000 0.0000 

2 0.0282 0.3803 0.4085 0.1268 0.0141 0.0282 0.0141 0.0000 0.0000 0.0000 0.0000 

3 0.0000 0.1321 0.5283 0.2830 0.0377 0.0189 0.0000 0.0000 0.0000 0.0000 0.0000 

4 0.0116 0.0349 0.1512 0.4186 0.3023 0.0581 0.0233 0.0000 0.0000 0.0000 0.0000 

5 0.0110 0.0220 0.0220 0.2418 0.2857 0.2967 0.1099 0.0000 0.0000 0.0110 0.0000 

6 0.0000 0.0000 0.0090 0.0721 0.2523 0.4144 0.1892 0.0631 0.0000 0.0000 0.0000 

7 0.0111 0.0111 0.0000 0.0111 0.0889 0.2333 0.4000 0.1667 0.0556 0.0111 0.0111 

8 0.0000 0.0000 0.0000 0.0147 0.0000 0.0441 0.2059 0.3971 0.1912 0.0735 0.0735 

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0306 0.0306 0.1327 0.3673 0.3367 0.1020 

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0065 0.0032 0.0129 0.1032 0.6645 0.2097 

11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0053 0.0053 0.0321 0.1738 0.7834 

A. Generalized exponential distribution for daily low 
temperature 
The probability density function and the cumulative 
distribution function of generalized exponential 
distribution in case of j

th
 state can be represented as 

follows:  

��(x) = α�λ�(1 − 	
λ��)(α� 
 �)	
λ�� , x >  0, �j > 0, �j > 0,
                 (1) 
and, 

F�(�) =  (1 − 	
���)�� , x >  0,α� >  0,λ� >  0, � =
 1, 2, . . . , 11.                (2) 
The generalized exponential distribution fits well daily 
low temperature data. 
Define Fj(x) = P [Next day low temperature ≤ x; when 
low temperature of today belongs to the state Bj], where 
j = 1, 2, 3, ..., 11. 
The mean and variance of the generalized exponential 
distribution can be given as: 

µ�
ˈ=  

� ��� �! 
 �(�)

��
; where αj> 0, λj> 0, j represents the 

state, j=1, 2, ..., 11.                      (3) 

µ"
ˈ=  

�ˈ(�) 
 �ˈ (�� �)

��
# ; where αj> 0, λj> 0, j represents the 

state, j=1, 2, ..., 11.                (4) 

Here $ ˈ is a derivative of $ (di-gamma function) which 
is known as tri-gamma function. 
With the help of method of moments, the parameters αj 
and λj are estimated based on the observed data of j

th
 

state for j = 1, 2, ..., 11, season wise and yearly data. 
The results are shown in Table 6. 

B. Simulation for comparison with original data 
In this section first of all we have simulated the 
temperatures for the 4007 days starting from the first 
day of the observed data using the values of λj and αj 

from Table 6. And the results are compared with the 
original data. The results obtained from simulation study 
exhibits almost close to the original data.  

C. Simulation for predicting the future 
The simulation is also carried out for future days, 
starting from the end of the observed data. The 
simulation is done for 5000 days as well as for 10,000 
days in case of the season wise and yearly data using R 
software. 

Table 6: Values of αj and λj for each state. 

State 

Winter season 
(October to January) 

Summer season  
(February to May) 

Monsoon season  
(June to September) 

All seasons combine 
(January to December) 

αj λj αj λj αj λj αj λj 

1 0.990486 326.5767 1.199516 2487.911 0.738121 6334020 1.489796 648.0234 

2 1.654744 5123189 1.541808 1349585 0.696336 8515149 2.279639 2000149794 

3 1.290355 1623976 1.308405 1869153 0.647778 8675623 1.908816 2000608388 

4 1.157554 3444917 1.138925 3114523 0.637846 21345068 1.625894 2001887721 

5 1.012174 3421753 0.990725 2914402 0.576911 12740704 1.421589 2001181401 

6 0.898028 3729918 0.925789 5711287 0.564141 24633906 1.258754 2001307715 

7 0.845852 8091023 0.836179 6793088 - - 1.128311 2003272924 

8 0.762772 6930886 0.766407 8161500 - - 1.024165 2002661594 

9 0.69822 7351549 0.69932 7382843 - - 0.934584 2004361872 

10 0.649586 7995810 0.705125 36289265 - - 0.861767 200473638 

11 0.585997 6804045 0.588215 8733744 - - 0.786253 2003094568 
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D. Simulation algorithm 
For simulation purpose the primary state is being 
considered based on the state of first day from the 
observed data. And the last day is being considered for 
the future prediction. 
The algorithm steps are mentioned below: 
1. Let the primary state is j (j = 1, 2, 3, … 11). The 

uniform random number between 0 to 1 is 
generated, say q. 

2. The random value (q) is compared one by one state 
wise with cumulative transition probabilities of the 
state j, till it exceeds the cumulative transition 
probability of the state, say k. Hence, the future state 
will be kth state. 

3. Select the appropriate values of parameters for the 
kth state from Table 6. 

4. Substitute the values of the parameters in the 
cumulative distribution function of doubly truncated 
generalized exponential distribution. 

F(x | a� <  � < b�)  =  (�
)*+�,)-� 
(�
)*+�.�)-�

(�
)*+�/�)-� 
(�
)*+�.�)-�
             (5) 

Where (aj, bj) is the limit of the j
th
 state, j = 1, 2, … 11 

and then x will be replaced by a random number 
between 0 to 1 in the left side of the above equation. 
5. Equating the value of random number q with the 

right side of the cumulative distribution function and 
using inverse transformation the temperature x is 
generated for the next day. 

6. Taking the state k as primary state repeats the 
above steps M times to generate temperature for M 
days. 

From the simulated results the descriptive statistics 
(Min, Max, Average and Standard Deviation) for season 
wise and entire year are presented in Table 7-10. For 
the data used and the predicted data the average 
temperature for winter, summer and monsoon remains 
closely to 17ᵒC, 23ᵒC and 27°C respectively. From the 
simulated data we have generated the number of days 
and the percentages having temperature above 12ᵒC, 
14ᵒC, 18ᵒC, 20ᵒC, 24ᵒC or 26ᵒC in winter, summer and 
the whole year (all seasons combined) for the next year. 
Similarly, the results are also generated for temperature 
below 9ᵒC, 11ᵒC, 15ᵒC, 17ᵒC, 25ᵒC and 27ᵒC for winter, 
summer and the whole year for the next year. For the 
monsoon season the numbers of days have an average 
temperature above 24ᵒC and 26 ᵒC as well as numbers 
of days have an average temperature below 25ᵒC and 
27ᵒC are estimated. 

E. Simulation based on the square of TPM 
In this section we have predicted temperature for future 
days from the end of the observed data. The one step 
transition probability matrix is constructed based on 
transition from today’s to tomorrow’s data. Therefore, 
the squared of TPM (T

2
) is used for prediction of 

temperature of the day after tomorrow. The predicted 
results for different choice of temperatures are 
presented in Table 15-18. The results are compared 
with the predictions made on the basis of generalized 
exponential distribution. 

Table 7: Descriptive statistics for observed and 
predicted temperature (ᵒoooC) of winter season. 

Statistics 

Winter 

Observ
ed 

N=1353 

Predicted 

N=13
53 

N=50
00 

N=100
00 

Minimum temp. 5 6 4 4 

Maximum temp. 35 35 35 35 

Average temp. 17 17 17 17 

Standard deviation of 
temp. 

4.47 4.89 4.78 4.67 

Table 8: Descriptive statistics for observed and 
predicted temperature (ᵒoooC) of summer season. 

Statistics 

Summer 

Observ
ed 

N=1312 

Predicted 

N=13
12 

N=50
00 

N=100
00 

Minimum temp. 5 7 5 5 

Maximum temp. 35 35 39 39 

Average temp. 23 23 23 23 

Standard deviation of 
temp. 

5.13 5.41 5.48 5.41 

Table 9: Descriptive statistics for observed and 
predicted temperature (ᵒoooC) of monsoon season. 

Statistics 

Monsoon 

Observ
ed 

N=1342 

Predicted 

N=13
42 

N=50
00 

N=100
00 

Minimum temp. 22 20 20 19 

Maximum temp. 33 37 38 38 

Average temp. 27 27 27 27 

Standard deviation of 
temp. 

1.64 2.63 2.54 2.55 

Table 10: Descriptive statistics for observed and 
predicted temperature (ᵒoooC) of yearly data. 

Statistics 

Yearly data 

Observ
ed 

N=4007 

Predicted 

N=40
07 

N=50
00 

N=100
00 

Minimum temp. 5 4 4 4 

Maximum temp. 35 37 37 37 

Average temp. 22 22 22 22 

Standard deviation of 
temp. 

5.55 5.69 5.62 5.49 
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Table 11: Frequency of simulated low temperature with different ranges for winter season. 

Temperature 

Observed 
frequency  

in days 
(N=1353) 

Observed 
percentage  

(%) 
(N=1353) 

Predicted 
frequency  

in days 
(N=1353) 

Predicted 
percentage  

(%) 
(N=1353) 

Predicted 
frequency  

in days 
(N=5000) 

Predicted 
percentage  

(%) 
(N=5000) 

Predicted 
frequency  

in days 
(N=10000) 

Predicted 
percentage  

(%) 
(N=10000) 

<9°C 7 0.52% 2 0.15% 19 0.38% 34 0.34% 

<11°C 61 4.51% 50 3.70% 258 5.16% 494 4.94% 

<15°C 414 30.60% 475 35.11% 1658 33.16% 3246 32.46% 

<17°C 637 47.08% 665 49.15% 2435 48.70% 4872 48.72% 

<25°C 1245 92.02% 1226 90.61% 4564 91.28% 9212 92.12% 

<27°C 1329 98.23% 1289 95.27% 4794 95.88% 9641 96.41% 

>12°C 1158 85.59% 1124 83.07% 4199 83.98% 8448 84.48% 

>14°C 939 69.40% 878 64.89% 3342 66.84% 6754 67.54% 

>18°C 505 37.32% 514 37.99% 1860 37.20% 3683 36.83% 

>20°C 306 22.62% 340 25.13% 1173 23.46% 2341 23.41% 

>24°C 108 7.98% 127 9.39% 436 8.72% 788 7.88% 

>26°C 24 1.77% 64 4.73% 206 4.12% 359 3.59% 

Table 12: Frequency of simulated low temperature with different ranges for summer season. 

Temperature 

Observed 
frequency  

in days 
(N=1312) 

Observed 
percentage  

(%) 
(N=1312) 

Predicted 
frequency  

in days 
(N=1312) 

Predicted 
percentage  

(%) 
(N=1312) 

Predicted 
frequency  

in days 
(N=5000) 

Predicted 
percentage  

(%) 
(N=5000) 

Predicted 
frequency  

in days 
(N=10000) 

Predicted 
percentage  

(%) 
(N=10000) 

<9°C 7 0.53% 5 0.38% 31 0.62% 56 0.56% 

<11°C 24 1.83% 28 2.13% 110 2.20% 195 1.95% 

<15°C 99 7.55% 88 6.71% 379 7.58% 760 7.60% 

<17°C 183 13.95% 189 14.41% 735 14.70% 1451 14.51% 

<25°C 741 56.48% 772 58.84% 2800 56.00% 5654 56.54% 

<27°C 939 71.57% 949 72.33% 3583 71.66% 7211 72.11% 

>12°C 1265 96.42% 1255 95.66% 4783 95.66% 9608 96.08% 

>14°C 1213 92.45% 1224 93.29% 4621 92.42% 9240 92.40% 

>18°C 1003 76.45% 1001 76.30% 3776 75.52% 7586 75.86% 

>20°C 870 66.31% 863 65.78% 3335 66.70% 6604 66.04% 

>24°C 571 43.52% 540 41.16% 2200 44.00% 4346 43.46% 

>26°C 373 28.43% 363 27.67% 1417 28.34% 2789 27.89% 

Table 13: Frequency of simulated low temperature with different ranges for monsoon season. 

Temperature 

Observed 
frequency  

in days 
(N=1342) 

Observed 
percentage  

(%) 
(N=1342) 

Predicted 
frequency  

in days 
(N=1342) 

Predicted 
percentage  

(%) 
(N=1342) 

Predicted 
frequency  

in days 
(N=5000) 

Predicted 
percentage  

(%) 
(N=5000) 

Predicted 
frequency  

in days 
(N=10000) 

Predicted 
percentage  

(%) 
(N=10000) 

<25°C 106 7.90% 232 17.29% 488 9.76% 1116 11.16% 

<27°C 709 52.83% 660 49.18% 2699 53.98% 5424 54.24% 

>24°C 1236 92.10% 1120 83.46% 4512 90.24% 8884 88.84% 

>26°C 633 47.17% 682 50.82% 2301 46.02% 4576 45.76% 

Table 14: Frequency of simulated low temperature with different ranges yearly data (combined all seasons). 

Temperature 

Observed 
frequency  

in days 

(N=4007) 

Observed 
percentage  

(%) 

(N=4007) 

Predicted 
frequency  

in days 

(N=4007) 

Predicted 
percentage  

(%) 

(N=4007) 

Predicted 
frequency  

in days 

(N=5000) 

Predicted 
percentage  

(%) 

(N=5000) 

Predicted 
frequency  

in days 

(N=10000) 

Predicted 
percentage  

(%) 

(N=10000) 

<9°C 14 0.35% 26 0.65% 26 0.52% 41 0.41% 

<11°C 85 2.12% 109 2.72% 123 2.46% 212 2.12% 

<15°C 513 12.80% 515 12.85% 609 12.18% 1201 12.01% 

<17°C 812 20.26% 801 19.99% 966 19.32% 1886 18.86% 

<25°C 2081 51.93% 2355 58.77% 2989 59.78% 6036 60.36% 

<27°C 2966 74.02% 2934 73.22% 3647 72.94% 7428 74.28% 

>12°C 3751 93.61% 3737 93.26% 4689 93.78% 9406 94.06% 

>14°C 3480 86.85% 3492 87.15% 4391 87.82% 8799 87.99% 

>18°C 2847 71.05% 2890 72.12% 3655 73.10% 7363 73.63% 

>20°C 2515 62.77% 2708 67.58% 3397 67.94% 6736 67.36% 

>24°C 1912 47.72% 1638 40.88% 2011 40.22% 3964 39.64% 

>26°C 1027 25.63% 1073 26.78% 1353 27.06% 2572 25.72% 
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Table 15: Predicted days based on square of TPM of winter season. 

Temperature <9°C <11°C <15°C <17°C <25°C <27°C >12°C >14°C >18°C >20°C >24°C >26°C 

Predicted Days 7 68 415 640 1247 1329 1158 938 502 304 106 24 

Table 16: Predicted days based on square of TPM of summer season. 

Temperature <9°C <11°C <15°C <17°C <25°C <27°C >12°C >14°C >18°C >20°C >24°C >26°C 

Predicted Days 7 24 99 183 739 938 1265 1213 1005 872 573 375 

Table 17: Predicted days based on square of TPM of monsoon season. 

Temperature <25°C <27°C >12°C >14°C 

Predicted Days 106 709 1236 633 

Table 18: Predicted days based on square of TPM of yearly data (combined all seasons). 

Temperature <9°C <11°C <15°C <17°C <25°C <27°C >12°C >14°C >18°C >20°C >24°C >26°C 

Predicted Days 18 94 533 823 2008 2927 3731 3460 2818 2522 1985 1066 

III. RESULTS AND DISCUSSION 

From the columns 2 to 5 of the Table 11-14, we 
observed that the simulated results for the same period 
used in the data are almost similar. The results forecast 
for next 5000 and 10,000 days from the last day of the 
observed data are given in the columns 6 to 9 of the 
Table 11-14. Not much difference is observed between 
the results obtained under 5000 and 10,000 simulations. 
Also, we found that the percentage of days for selected 
categories of temperature remains almost similar to the 
results obtained through the observed data. Which 
shows that the generalized exponential model works 
good for predicting daily low temperature. 
The prediction for next 4007 days is also made using 
square of TPM. The classification of days for the 
selected categories of temperature are shown in Table 
15-18. The results are almost closed to the classified 
frequencies of the observed data. 

IV. CONCLUSION 

In this paper we have generated Markov chain model 
with the help of TPM. The daily low temperature can be 
projected using two different approaches – applying 
generalized exponential model and using square of 
TPM. The temperature prediction results obtaining 
through the above mentioned methods are almost 
identical. 

V. FUTURE SCOPE 

The similar model can be used for predicting the low 
temperature for other places to confirm the model’s 
accuracy. For the statistical analysis of daily low 
temperature some further statistical models can also be 
developed, and a comparison can be made with the 
model used within this paper. 
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